Всё о воде

Что такое жидкость
Жесткость воды
Тяжёлая вода
Минеральная вода
Концентрация растворов
Вода и измерения
Структура воды
Диссоциация воды и pH
Водородная связь
Молекула воды
Физические свойства воды
Химический состав воды
Электролитическая диссоциация
Электропроводность растворов

Тяжёлая вода

Тяжелая вода - вода в которой "обычный" водород 1H (легкий) заменен тяжелым изотопом 2H - дейтерием (D). У тяжелой воды, также как и у обычной, нет ни цвета, ни вкуса, ни запаха.

В настоящее время известны три изотопа водорода: 1H, 2H(D), 3H(T). Самый легкий из них - 1H называется протием. Почти целиком из него состоит обычная вода, частично в ней содержится более тяжелый водород - дейтерий (D) и сверхтяжелый тритий (T). Встречаются три изотопа кислорода: 16O, тяжелый 18O и совсем немного в природе 17O. С помощью мощных ускорителей и реакторов физики получили еще пять радиоактивных изотопов кислорода: 13O, 14O, 15O, 19O, 20O. Продолжительность их жизни очень коротка - она измеряется несколькими минутами, затем, распадаясь, они превращаются в изотопы других элементов.

В составе обычной воды можно обнаружить не только тяжелую воду. Известна сверхтяжелая вода T2O (атомная масса трития - Т равна 3) и тяжелокислородная вода, молекулы которой содержат вместо атомов 16O атомы 17O и 18O. Изотопные разновидности воды присутствуют в обычной в ничтожнейших количествах. В природных водах на один атом дейтерия приходится 6500-7200 атомов водорода 1H, а чтобы обнаружить один атом трития, надо иметь по крайней мере 1018 атомов 1H.

После обнаружения тяжелой воды ученые поначалу были настолько удивлены, что рассматривали тяжелую воду как химический курьез. Однако удивление было недолгим. Итальянский физик Энрико Ферми, проводивший эксперименты в области ядерной физики, понял, что тяжелая вода имеет огромнейшее военное значение. С тех пор события, развивающиеся вокруг этой странной жидкости, были полны драматизма и глубочайшей секретности. И все потому, что судьба тяжелой воды тесно переплеталась с развитием атомной энергетики. Такая вода используется в ядерных реакторах как теплоноситель и замедлитель нейтронов.

Основные физико-химические константы обычной и тяжелой воды существенно различаются. Обычная вода, ее водяной пар и лед, состав которых выражается химической формулой H2O, имеет молекулярную массу 18,0152 г. Лед образуется при 0°С (273 K), а закипает вода при 100 °C (373 K). Тяжелая вода превращается в лед при 3,813 °C, а пар образуется при 101,43 °C. По вязкости тяжелая вода на 20 % превосходит обычную воду, а максимальная плотность наблюдается при температуре 11,6 °C. Ее химическая формула D2O, где водород заменен на дейтерий, атомная масса которого в 2 раза больше. Окись дейтерия имеет молекулярную массу 20,027. Удельная масса ее на 10 % выше, чем у обычной воды. Вот почему она и называется тяжелой водой.

Тяжелая вода, как выяснили ученые, подавляет все живое. Вот какими резко полярными свойствами отличаются дейтериевая вода и обычная - протиевая. Тяжелая вода замедляет биологические процессы и действует угнетающе на живые организмы. Микробы в тяжелой воде гибнут, семена не прорастают, растения и цветы вянут при поливке такой водой. Тяжелая вода гибельно влияет на животных. А на человека? К сожалению, о тяжелой воде нам известно еще далеко не все.

В 1 т речной воды присутствует около 150 г тяжелой. В океанской воде ее чуть больше: на 1 т приходится 165 г. В озерах тяжелой воды обнаружено на 15-20 г больше, чем в реках, из расчета на 1 т. Любопытно отметить, что дождевая вода содержит больше окиси дейтерия, чем снег. Такие различия кажутся странными, ведь то и другое - осадки атмосферного происхождения. Да, источник один, а содержание тяжелой воды разное. Таким образом, речные, озерные, грунтовые и морские воды весьма несхожи по изотопному составу и, следовательно, как объекты, используемые для получения тяжелой воды, далеко не равнозначны. Было время, когда ее считали "мертвой водой" и полагали, что присутствие тяжелой воды в обычной замедляет обмен веществ, способствует старению организма. Случаи долгожительства на Кавказе некоторые исследователи связывают с меньшим количеством окиси дейтерия в горных потоках ледникового и атмосферного происхождения. Возникновение пустынь, исчезновение оазисов и гибель даже целых цивилизаций древности нередко приписывают накоплению окиси дейтерия в питьевой воде. Однако пока это все только гипотезы, туманные догадки, не подтвержденные экспериментальными результатами.

Предполагается, что молекулы тяжелой воды D2O в естественных условиях практически не встречаются, а преобладают молекулы, имеющие один атом дейтерия - HDO.

Несколько большая масса молекул HDO, D2O и повышенная прочность дейтериевой связи способствуют тому, что тяжелая вода активнее удерживается в жидкой фазе по сравнению с обычной водой. Следовательно, давление пара тяжелой воды всегда ниже, чем H2O, и это приводит к тому, что молекулы, содержащие дейтерий, концентрируются в жидкой фазе в процессе испарения. На этом построено фракционное разделение изотопов. В естественных условиях эти явления наблюдаются в экваториальных водах, когда в процессе испарения в поверхностных водах увеличивается концентрация изотопа D по сравнению с глубинными горизонтами. Изучение атмосферных осадков показывает, что в первую очередь с дождем выпадают тяжелые изотопы D или 18O. Изотопное разделение происходит в процессе замерзания и таяния. Арктический лед, образующийся из морской воды, содержит на 2 % изотопов D больше, чем вода, из которой он образовался.

Прочность дейтериевой связи и фракционное разделение изотопов заставляют многих исследователей обратить внимание на изучение обменных процессов в живом организме. Одни считают, что удаление дейтерия из воды приведет к резкому повышению жизнестойкости организма и даже к продлению жизни. Другие полагают, что наличие дейтерия создает в биологическом мире определенный баланс в процессах внутриклеточного обмена и его отсутствие вызовет серьезные нарушения в живой и неживой природе.

Исследования жизнедеятельности микроорганизмов при постепенном добавлении тяжелой воды к обычной показали их удивительную приспособляемость к новой среде. Когда обычная вода была полностью заменена на дейтериевую, микроорганизмы не погибли, а какое-то время испытывали лишь некоторое угнетение, но после "акклиматизации" продолжали активно развиваться. Такое поведение микроорганизмов наталкивает на мысль, что живая клетка снабжена удивительнейшим механизмом приспособляемости, который спасает ее от гибели даже в условиях накопления дейтерия. Однако отдельные клетки организма из-за каких-то нарушений могут оказаться неустойчивыми, и это приводит их к гибели.

Сколько изотопных разновидностей воды может существовать
Оказывается, очень много. По мнению И. В. Петрянова-Соколова, теоретически можно взять различные комбинации изотопов водорода и кислорода, т.е. если каждый изотоп кислорода прореагирует в аналогичном для воды соотношении с изотопами водорода - 1:2, то из всего набора компонентов можно будет получить 48 разновидностей воды. Как ни парадоксально это звучит, но факт остается фактом. Из нескольких десятков разновидностей воды большая часть существует только теоретически, попросту говоря, только на бумаге. Из 48 вод 39 - радиоактивны и всего лишь 9 стабильны, т.е. устойчивы:

H216O, H217O, H218O, HD16O, HD17O, HD18O, D216O, D217O, D218O.

Открытие каких-либо новых изотопов водорода и кислорода будет резко повышать число теоретически возможных вод.

Использование тяжелой воды
В течение непродолжительного времени после открытия Юри тяжелая вода рассматривалась лишь как химический курьез. Но в это же самое время известный итальянский физик Энрико Ферми проводил эксперименты в области ядерной физики, составившие эпоху в науке. Результаты этих опытов обнаружили огромное военное и экономическое значение тяжелой воды. Ферми и его сотрудники в 1934 г. подвергали различные элементы обстрелу нейтронами, обладавшими большой энергией (скоростью). В результате были получены атомы с искусственной радиоактивностью, или так называемые радиоизотопы. Ферми установил, что почти каждый нерадиоактивный в нормальных условиях элемент можно сделать радиоактивным, т.е. превратить его в радиоизотоп, с помощью обстрела нейтронами. Он нашел также, что общая эффективность бомбардировки нейтронами с целью вызвать искусственную радиоактивность значительно увеличивалась с уменьшением их скорости.

Подобно электрону и фотону света, нейтрон обнаруживает свойства частицы, но его движению присущи также свойства волны. Он обладает длиной волны, которая физически определяет его "размер", и эта длина волны изменяется обратно пропорционально его частоте. Чем ниже частота, являющаяся мерой энергии нейтрона, тем больше длина волны. Нейтрон с низкой энергией (маленькой скоростью), например с энергией в 0,1 эв, будет иметь длину волны или "размер", превышающую более чем в 10 000 раз диаметр атомного ядра. Очевидно, что такой замедленный нейтрон, проходя через скопление атомов, имеет больше шансов удариться (задеть) об ядро, чем более быстрый электрон. Имеется также больше вероятия, что такой электрон будет "захвачен", или поглощен, ядром, которое он заденет. Но как может ядро поглотить предмет, в 10 000 раз превышающий его по своим размерам? Здесь снова следует припомнить, что в данном случае мы имеем дело с волновыми характеристиками нейтрона. Внутри ядра нейтрон приобретает энергию примерно в 50 млн. в с соответствующим огромным увеличением своей частоты, которая обратно пропорциональна длине волны. При увеличении частоты длина волны уменьшается. Нейтрон, поглощенный таким образом ядром, вызывает нарушение ядерного равновесия, в результате чего начинается радиоактивное излучение. Другими словами, создается радиоизотоп.

Вскоре после открытия Ферми и его сотрудников немецкие ученые О. Ган и Ф. Штрассман обнаружили, что поглощение нейтронов ядрами урана вызывает расщепление, или деление, этих ядер. Оба осколка ядра, вместе взятые, имеют меньшую массу, чем первоначальное ядро, а поскольку разница в массе превращается в кинетическую энергию в количестве, определяемом соотношением между массой и энергией Альберта Эйнштейна (E=mc2), то оба осколка разлетаются в стороны с колоссальной скоростью. При этом они испускают два или три нейтрона, которые сверхтяжелый атом урана имеет во множестве. Каждый выпущенный нейтрон теоретически может расщепить любое способное к расщеплению ядро, какое он встретит на своем пути; в результате такого столкновения высвободятся еще два или три нейтрона. Другими словами, процесс расщепления, или деления, ядер может стать самопроизвольным, самораспространяющимся: может начаться так называемая цепная реакция. Дальнейшие опыты вскоре показали, что из трех изотопов урана расщепление происходит почти исключительно лишь у ядер урана U235, который при нормальных условиях составляет всего лишь 0,7% обыкновенного урана. Как и следовало ожидать из исследований Ферми, расщепление урана U235 происходило наиболее эффективно под воздействием замедленных нейтронов. Было установлено, что для возбуждения цепной реакции в обыкновенном уране необходимо иметь большой запас весьма замедленных нейтронов. Нейтроны, обладающие большой скоростью, с энергией в миллионы электронвольт, также иногда случайно расщепляют урановые атомы, но это происходит не настолько часто, чтобы вызвать цепную реакцию. Нейтроны с умеренной энергией (в несколько электронвольт) представляют собой осколки урана U235, но они подвергаются захвату ядрами урана U238 - изотопа, составляющего около 99% обыкновенного урана. Захват их ураном U238 исключает их, так сказать, из обращения, поскольку уран U238 не расщепляется, а, наоборот, стремится приобрести устойчивость, выделяя из себя один электрон (это, разумеется, увеличивает ядерный заряд на единицу, превращая уран с атомным числом 93 в плутоний с атомным числом 94). Для расщепления требуются "тепловые" нейтроны, названные так потому, что их энергия, равная примерно 0,02 эв, не превышает энергии нормального теплового движения атомов, среди которых они перемещаются. Тепловые нейтроны не только легко расщепляют U235, но они не подвержены также захвату ураном U238. Они отличаются, кроме того, значительными размерами, перемещаясь среди атомов урана U238, они с большей вероятностью могут встретиться с легко расщепляющимся ураном U235. Все это делает возможным возникновение самопроизвольной цепной реакции в обычном уране, несмотря на то, что он содержит лишь 0,7% урана U235, при условии, однако, что имеется какой-то способ для замедления нейтронов, испускаемых при расщеплении урана U235. Необходим так называемый "замедлитель" - такое вещество, которое могло бы поглощать излишнюю энергию нейтронов, не захватывая самих нейтронов.

Движение нейтрона будет резко замедлено, если он столкнется с ядром, вес которого лишь ненамного превышает его собственный; при этом нейтрон сообщит часть своей энергии частице, с которой он столкнулся, совершенно так же, как это происходит с биллиардным шаром при его ударе о другой шар. Это предопределяет возможность использования в качестве замедлителя водородных соединений, в частности, воды. Поскольку ядро простого водорода, состоящее из одного лишь протона, имеет ту же самую массу, что и нейтрон, оно способно принять на себя при столкновении значительную часть энергии нейтрона. Но, к сожалению, ядро простого водорода не только частично поглощает энергию нейтрона, но часто захватывает и сам нейтрон, превращаясь в ядро атома дейтерия. Поэтому обыкновенная вода как замедлитель малоэффективна. Зато лучшими свойствами обладает тяжелая вода. Ядра дейтерия, состоящие из одного нейтрона и одного протона, с трудом поглощают нейтроны, но легко воспринимают при столкновении значительные количества энергии нейтронов. Таким образом, тяжелая вода D2O является очень эффективным замедлителем, наиболее эффективным среди всех известных нам веществ. Чтобы отдать свою энергию и стать "тепловым", для взаимодействия с урана U235, нейрону достаточно 25 столкновений с ядром дейтерия, а например при столкновении с ядром углерода (графитовые стержни) потребуется 110 столкновений.

Но у тяжелой воды есть потенциал сталь гораздо более полезной, чем замедлитель нейронов. При очень высоких температурах может произойти нечто совершенно противоположное расщеплению ядра. Теплота является энергией движения, и при достижении ею некоторого предела ядерная энергия настолько возрастает, что она может преодолеть электростатические силы, которые при более низких температурах вызывают отталкивание двух положительных зарядов. Так возникнет новое ядро путем слияния двух ядер в результате так называемой термоядерной реакции. Однажды начавшись в среде легких атомов, она будет развиваться дальше подобно цепной реакции: ядро, образовавшееся в результате слияния, имеет несколько меньшую массу, чем оба исходных ядра; разница в массе преобразуется в энергию в соответствии с уравнением Эйнштейна, выражающим соотношение между массой и энергией (E=mc2); часть этой энергии передается другим ядрам, вызывая их слияние. Но как получить необходимую для термоядерной реакции начальную температуру, измеряемую миллионами градусов? Раньше такую температуру можно было получить лишь на короткий миг во время взрыва урановой или плутониевой атомной бомбы. Поэтому у всех водородных бомб в качестве "запала" применялись атомные бомбы, действующие по принципу ядерного распада. Когда будут найдены способы дешевого и безопасного получения необходимой начальной температуры и способы её локализации, то наступит время, когда ядерное слияние в качестве источника промышленной энергии окажется экономически более выгодным, чем ядерный распад. Одно из его крупных преимуществ заключается в том, что управляемое слияние не будет давать опасных радиоактивных отходов. Другое его преимущество состоит в том, что топливо для слияния в противоположность топливу для распада имеется на Земле в огромных количествах.

Физики ядерщики определили, что ядра дейтерия особенно легко подвергаются слиянию. Поэтому значение дейтерия все возрастает по мере приближения того времени, когда запасы ископаемого топлива на Земле будут исчерпаны. Запасы же ядерного горючего в Мировом океане практически безграничны. Дейтерий, содержащийся в 1 л морской воды, заключает энергию, эквивалентную энергии около 350 л бензина. Теоретически воды океанов и морей могут обеспечить человечество источником энергии на миллиарды лет.

История открытия тяжелой воды
Американский физико-химик Гарольд Юри (1893-1981), в молодости проявлявший большой интерес к ядерной структуре вещества, решил использовать спектроскопический метод для изучения водорода. Выполненные Г. Юри теоретические расчеты убедили, что попытки разделения водорода на изотопы могут привести к интересным результатам - к выявлению нового стабильного изотопа водорода, существование которого предсказал ещё Э. Резерфорд. Руководствуясь этими соображениями, Г. Юри поручил одному из своих учеников выпарить 6 л жидкого водорода, и в конце эксперимента исследователи получили остаток объемом около 3 см3. Самое удивительное, что в результате спектрального анализа остатка было найдено такое же расположение линий, какое было предсказано Г. Юри на основе теоретических предпосылок. Тяжелый водород - дейтерий был открыт.

Об этом Г. Юри сообщил в 1931 году на новогоднем собрании Американской Ассоциации развития науки в Нью-Орлеане. Дальнейшие усилия ученого были направлены на получение образца с высокой концентрацией дейтерия. Это удалось сделать с помощью электролиза, газовой диффузии, дистилляции воды и других методов. Разные упругости пара H2 и HD позволили Г. Юри, Ф. Брикведде и Г. Мэрфи доказать существование дейтерия. Опубликованная Г. Юри совместно с сотрудниками работа произвела ошеломляющее впечатление на ученых самых различных областей науки. Многие специалисты воспринимали это известие как что-то фантастическое и спорное, но экспериментальные факты показывали, что тяжелый изотоп водорода реально существует.

Дейтерий начал свой сложный путь, а Г. Юри была вручена Нобелевская премия (1934). После открытия дейтерия события развивались очень быстро. Дело было только за экспериментом, но это оказалось весьма сложной технической задачей. Тяжелая вода была впервые обнаружена в природной воде Г. Юри и Э.Ф. Осборном в 1932 году.

Академик Н.Д. Зелинский, узнав об открытии тяжелой воды, писал в 1934 году: "Кто бы мог подумать, что в природе существует еще другая вода, о которой мы до прошлого года ничего не знали, вода, которую в весьма небольшом количестве мы ежедневно вводим в свой организм вместе с питьевой водой. Однако небольшие количества этой новой воды, потребляемые человеком в течение жизни, составляют уже порядок величины, с которым нельзя не считаться". Развивая свою мысль, продолжал: "В эволюции химических форм в биосфере и литосфере тяжелая вода не может не принимать участия, и вопрос о том, в какой стадии такого эволюционного процесса находится тяжелая вода в нашу эпоху, в стадии накопления ее в природе или в стадии деградации, представляется весьма важным и с точки зрения обмена веществ в живых организмах, в котором вода играет первостепенную роль. Все живое проводит через свой организм громадные массы обыкновенной воды, а вместе с ней и тяжелую воду; какое же влияние оказывает последняя на жизненные функции организма? Пока это неизвестно, но такое влияние должно быть несомненным".


Литература

Copyright © 2009-2010 all-about-water.ru